
B. Mehlig, Department of Physics, University of Gothenburg, Sweden

Thanks to E. Werner and H. Linander (Zenuity)

FFR135 Artificial Neural Networks Chalmers/Gothenburg University, 7.5 credits

Neural Networks

1

Neurons in the cerebral cortex

Neurons in the cerebral cortex (outer layer of the cerebrum, the largest and
best developed part of the Human brain)

brainmaps.org

2

Neurons in the cerebral cortex

Neurons in the cerebral cortex (outer layer of the cerebrum, the largest and
best developed part of the Human brain)

brainmaps.org

3

dendrites

cell body

axon

 input

process

 output

Neuron anatomy and activity

Neurons in the cerebral cortex

synapsedendrites
cell body axon

synapseweb.clm.utexas.edu/dimensions-dendrites
wikipedia.org/wiki/Neuron

Spike train in electrosensory pyramidal neuron in
fish (Eigenmannia)
Gabbiani & Metzner, J. Exp. Biol. 202 (1999) 1267

active inactive

100 µmTotal length of dendrites
up to � cm

time

4

Schematic drawing of a neuron Output of a neuron: spike train

input process output

https://synapseweb.clm.utexas.edu/dimensions-dendrites
https://synapseweb.clm.utexas.edu/dimensions-dendrites

McCulloch-Pitts neuron

Simple model for a neuron: Signal processing: weighted sum of inputs
 Activation function

�

�1

�2

�N

Weights
(synaptic
couplings)

wi1

wi2

wiN

Incoming
signals
j=1,...,N

�j

wij Threshold
Neuron number

�i

�i

Output

Oi

Oi

Oi = g
� N�

j=1

wij�j � �i

�

= g
�
wi1�1 + . . . + wiN�N � �i)

g(bi)

= bi

i

(local field)

5

McCulloch & Pitts, Bull. Math. Biophys. 5 (1943) 115

Activation function

Signal processing of McCulloch-Pitts neuron: weighted sum of inputs with activation
function :

= g
�
wi1�1 + . . . + wiN�N � �i)

g(bi)

Oi = g
� N�

j=1

wij�j � �i

�

= bi

Inputs �j

Synaptic couplings wij

Threshold
Output Oi

�i

g(b)

b

1

Step function

g(b)

b

1

�1

0

Signum function

g(b)

b

1

Sigmoid function
with parameter � > 0

g(x) =
1

e��b + 1�(b) sgn(b)

0

6

g(b)

ReLU function

0

max(0, b)

b

Highly simplified idealisation of a neuron

Take activation function to be signum function .
Output of neuron can assume only two values, ,
representing the level of activity of the neuron.

This is an idealisation.

-real neurons fire spike trains

-switching active inactive can be delayed (time delay)

-real neurons may perform non-linear summation of inputs

-real neurons subject to noise (stochastic dynamics)

�
�

�

1

�1

active

inactivei
sgn(bi)
±1

7

Neural networks

Connect neurons into networks that can perform computing tasks: for example
image analysis, object identification, pattern recognition, classification, clustering,
data compression.

8

Simple perceptrons

Two-layer perceptron

Recurrent network

Boltzmann machine

inputs inputs

A classification task

Input patterns . Index labels patterns.

Each pattern has two components, and .

Arrange components into vector, ,
shown in the Figure.

We see: the patterns fall into two classes: on
the left, and on the right.

⇠(µ) µ = 1, . . . , p

�1

�2
⇠(1)

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)

⇠(6)

9

⇠(µ) =

"
⇠(µ)
1

⇠(µ)
2

#
⇠(µ)
1 �(µ)

2

A classification task

Input patterns . Index labels patterns.

Each pattern has two components, and .

Arrange components into vector, ,
shown in the Figure.

We see: the patterns fall into two classes: on
the left, and on the right.

Draw a red line (decision boundary) to distinguish
the two types of patterns.

⇠(µ)

�1

�2
⇠(1)

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)

⇠(6)

10

⇠(µ) =

"
⇠(µ)
1

⇠(µ)
2

#
⇠(µ)
1 �(µ)

2

µ = 1, . . . , p

A classification task

Input patterns . Index labels patterns.

Each pattern has two components, and .

Arrange components into vector, ,
shown in the Figure.

We see: the patterns fall into two classes: on
the left, and on the right.

Draw a red line (decision boundary) to distinguish
the two types of patterns.

Aim: train a neural network to compute the decision boundary. To do this, define target
values:
 for , and for

 Training set .

⇠(µ)

�1

�2
⇠(1)

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)

⇠(6)

11

⇠(µ) =

"
⇠(µ)
1

⇠(µ)
2

#
⇠(µ)
1 �(µ)

2

t(µ) = 1 t(µ) = �1

(�(µ), t(µ)), µ = 1, . . . , p

µ = 1, . . . , p

Simple perceptron

Simple perceptron: one neuron. Two input units and . Activation function .
 No threshold, .

 Output

 Vectors

 Scalar product between vectors:

 So

Aim: adjust the weights so that network outputs correct target value for all patterns:

�1

�2

w1

w2

sgn(b)�1 �2

w =


w1

w2

�
⇠ =


⇠1

⇠2

�

� = 0

O = sgn(w1�1 + w2�2) = sgn(w · ⇠)

w · ⇠ = w1⇠1 + w2⇠2

angle between
 and w �

' w

⇠

= |⇠|


cos ↵
sin↵

�
= |w|


cos �
sin�

�

= |w| |⇠|(cos ↵ cos � + sin↵ sin�
�

= |w| |⇠| cos(↵� �)

O

↵
�

12

inputs

output denotes length of vector w

w · � = |w| |�| cos �

w

O(µ) = sgn(w · ⇠(µ)) = t(µ) µ = 1, . . . , pfor

Geometrical solution

Simple perceptron: One neuron. Two input units and . Activation function .
 No threshold, .

 Output with

Aim: adjust the weights so that network outputs correct target values for all patterns:

 where for and for .

 Solution:

 decision boundary

�1

�2

w1

w2

sgn(b)�1 �2

�1

�2

w

⇠(1)

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)
'

⇠(6)

angle between
 and w �

w · ⇠(8) > 0

� = 0

13

Check: so . Correct
since .

O

inputs

output

w

O = sgn(w · ⇠) w · � = |w| |�| cos �

O(µ) = sgn(w · ⇠(µ)) = t(µ) µ = 1, . . . , pfor

t(µ) = 1 t(µ) = �1

Legend
t(µ) = 1

t(µ) = �1

O(8) = sgn(w · ⇠(8)) = 1

w �

t(8) = 1

Hebb’s rule

The pattern is on the wrong side of the red line. So .

Move the red line so that by rotating the weight vector :

�1

�2

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)

⇠(6)

⇠(8)

w

w

14

⇠(1)

Legend
t(µ) = 1

t(µ) = �1

O(8) = sgn(w · ⇠(8)) 6= t(8)

O(8) = sgn(w · ⇠(8)) = t(8)

Hebb’s rule

�1

�2

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)

⇠(6)

The pattern is on the wrong side of the red line. So .

Move the red line so that by rotating the weight vector :

 (small parameter) so that .

⇠(8)

w

w�

w� = w + ��(8) � > 0

15

⇠(1)

Legend
t(µ) = 1

t(µ) = �1

O(8) = sgn(w · ⇠(8)) 6= t(8)

O(8) = sgn(w · ⇠(8)) = t(8)

O(8) = sgn(w · ⇠(8)) = t(8)

Hebb’s rule

The pattern is on the wrong side of the red line. So .

Move the red line so that by rotating the weight vector :

 (small parameter) so that .

�1

�2

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)

⇠(6)

w

�(4)

� > 0w� = w � ��(4)

w

16

⇠(1)

Legend
t(µ) = 1

t(µ) = �1

O(4) = sgn(w · ⇠(4)) 6= t(4)

O(4) = sgn(w · ⇠(4)) = t(4)

O(4) = sgn(w · ⇠(4)) = t(4)

Hebb’s rule

The pattern is on the wrong side of the red line. So .

Move the red line so that by rotating the weight vector :

 (small parameter) so that .

�1

�2

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)

⇠(6)

w

w�

� > 0

17

⇠(1)

Legend
t(µ) = 1

t(µ) = �1

�(4)

w� = w � ��(4)

O(4) = sgn(w · ⇠(4)) 6= t(4)

O(4) = sgn(w · ⇠(4)) = t(4)

O(4) = sgn(w · ⇠(4)) = t(4)

Hebb’s rule

The pattern is on the wrong side of the red line. So .

Move the red line so that by rotating the weight vector :

 (small parameter) so that .

 Note the minus sign:

 where

 where

 Learning rule (Hebb’s rule)

 with

�1

�2

⇠(2)

⇠(3)

⇠(4)

⇠(5)

⇠(8)

⇠(7)

⇠(9)

⇠(10)

⇠(6)

w

w�

� > 0

w� = w � ��(4)

w� = w + ��(8)

w0 = w + �w

18

Apply learning rule many times until problem is solved.

⇠(1)

Legend
t(µ) = 1

t(µ) = �1

�(4)

w� = w � ��(4)

O(4) = sgn(w · ⇠(4)) 6= t(4)

O(4) = sgn(w · ⇠(4)) = t(4)

O(4) = sgn(w · ⇠(4)) = t(4)

t(8) = 1

t(4) = �1

�w = ⌘ t(µ)⇠(µ)

Example - AND function

Logical AND

�1

�2

⇠(1)

⇠(2)

⇠(3)

⇠(4)
w

�1

�2 w2 = 1

w1 = 1

19

Legend
t(µ) = 1

t(µ) = �1

1

⇠1 ⇠2 t

0 0 -1

1 0 -1

0 1 -1

1 1 1

Example - XOR function

Logical XOR

�1

�2

⇠(1)

⇠(2)

⇠(3)

⇠(4)

20

Legend
t(µ) = 1

t(µ) = �1

1

⇠1 ⇠2 t

0 0 -1

1 0 1

0 1 1

1 1 -1

Example - XOR function

Logical XOR

This problem is not linearly separable because we cannot separate from by a
single red line.

�1

�2

⇠(1)

⇠(2)

⇠(3)

⇠(4)

21

Legend
t(µ) = 1

t(µ) = �1

1

⇠1 ⇠2 t

0 0 -1

1 0 1

0 1 1

1 1 -1

Example - XOR function

Logical XOR

This problem is not linearly separable because we cannot separate from by a
single red line.

Solution: use two red lines.

�1

�2

⇠(1)

⇠(2)

⇠(3)

⇠(4)

22

Legend
t(µ) = 1

t(µ) = �1

1

⇠1 ⇠2 t

0 0 -1

1 0 1

0 1 1

1 1 -1

Example - XOR function

�1

�2

⇠(1)

⇠(2)

⇠(3)

⇠(4)

�1

layer of hidden neurons
 and (neither input
nor output)

all hidden weights equal to

Logical XOR

Two hidden neurons, each one defines one red line.

Together they define three regions, , , and .

We need a third neuron (with weights and to associate region with ,
and regions and with .

I II III

W1 W2 II

II IIII

II III

1

1
1

1

1

1

2

21

�2

V1

V2

V2V1

O = sgn(V1 � V2 � 1)

1

�1

threshold
23

Legend
t(µ) = 1

t(µ) = �1

1

⇠1 ⇠2 t

0 0 -1

1 0 1

0 1 1

1 1 -1

Non-(linearly) separable problems

Solve problems that are not linearly separable with a hidden layer of neurons

Four hidden neurons - one for each red line-segment. Move the red lines into the
correct configuration by repeatedly using Hebb’s rule until the problem is solved
(a fifth neuron assigns regions and solves the classification problem).

�1

�2

24

�1

�2

Legend
t(µ) = 1

t(µ) = �1

Generalisation

Train the network on a training set : move red lines into the
 correct configuration by repeatedly applying Hebb’s rule to
 adjust all weights. Usually many iterations necessary.

Once all red lines are in the right place (all weights determined), apply network to a new
data set. If the training set was reliable, then the network has learnt to classify the new data,
it has learnt to generalise.

�1

�2

25

�1

�2

Legend
t(µ) = 1

t(µ) = �1

(�(µ), t(µ)), µ = 1, . . . , p

Training

Train the network on a training set : move red lines into the
 correct configuration by repeatedly applying Hebb’s rule to
 adjust all weights. Usually many iterations necessary.

Once all red lines are in the right place (all weights determined), apply network to a new
data set. If the training set was reliable, then the network has learnt to classify the new data,
it has learnt to generalise.

�1

�2

26

�1

�2

Legend
t(µ) = 1

t(µ) = �1

(�(µ), t(µ)), µ = 1, . . . , p

Training

Train the network on a training set : move red lines into the
 correct configuration by repeatedly applying Hebb’s rule to
 adjust all weights. Usually many iterations necessary.

Usually a small number of errors is acceptable. It is often not meaningful to try to fine-
tune very precisely (input patterns are subject to noise).

�1

�2

error

27

�1

�2

Legend
t(µ) = 1

t(µ) = �1

(�(µ), t(µ)), µ = 1, . . . , p

Overfitting

Train the network on a training set : move red lines into the
 correct configuration by repeatedly applying Hebb’s rule to
 adjust all weights. Usually many iterations necessary.

 Here: used hidden neurons to fit decision boundary
 decision boundary very precisely.

 But often the inputs are affected by noise, which
 can be very different in different data sets

�1

�2

28

15

training set

Legend
t(µ) = 1

t(µ) = �1

(�(µ), t(µ)), µ = 1, . . . , p

Overfitting

Train the network on a training set : move red lines into the
 correct configuration by repeatedly applying Hebb’s rule to
 adjust all weights. Usually many iterations necessary.

 Here: used hidden neurons to fit decision boundary
 decision boundary very precisely.

 But often the inputs are affected by noise, which
 can be very different in different data sets.

 Here the network just learnt noise in the training set.
 Avoid this by reducing number of weights (dropout).

�1

�2

x

29

15

 data set

Legend
t(µ) = 1

t(µ) = �1

(�(µ), t(µ)), µ = 1, . . . , p

Multilayer perceptrons

All examples had a two-dimensional input space and one-dimensional outputs.
Reason: so that we could draw the problem and understand its geometrical form.

In reality problems are often high-dimensional. For example image recognition:
input dimension . Output dimension: number of classes to be
recognised (car, lorry, road sign, person, bicycle,...)

Multilayer perceptron: network with many hidden layers

Two problems: (i) expensive to train if many weights
 (ii) slow convergence (weights get stuck)

Questions: (i) how many hidden layers necessary?
 (ii) how many hidden layers efficient?

N = #pixels� 3

hidden layers
number and mm� 1

30

How many hidden layers?

All Boolean functions with inputs can be trained/learned with a single hidden layer.

Proof by construction. Requires neurons in the hidden layer.

Example: XOR function ().

For large , this architecture is not practical,
because the number of neurons increases
exponentially with .

Better: use more layers. Intuition: the more layers the more
powerful is the network.

But such deep networks
are in general hard to
train.

with

N

�1

�2

�w

+w

2N

N = 2

N

N

w > 0inputs outputs hidden layers

31

Deep learning

Deep learning. Perceptrons with
large numbers of layers.

In the last few years, interest in
neural-network algorithms has
exploded, and their performance
has significantly improved. Why?

Better training sets

Improved architecture
 - better activation functions,
 - a bunch of other tricks (dropout, batch normalisation)

Better hardware
 - GPUs
 - dedicated chips by Google

CHAPTER 1. INTRODUCTION

2010 2011 2012 2013 2014 2015

Year

0 00.

0 05.

0 10.

0 15.

0 20.

0 25.

0 30.

IL
S
V

R
C

 c
la

ss
ifi

ca
ti

o
n

er
ro

r
ra

te

Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet

Large Scale Visual Recognition Challenge, they have consistently won the competition

every year, and yielded lower and lower error rates each time. Data from Russakovsky

et al. et al.() and2014b He ().2015

28

Goodfellow et al. Deep Learning (2016)

not NN NNcla
ss

ific
at

io
n

er
ro

r (
to

p-
5)

32

g(b) = max(0, b) Giorot, Bordes & Bengio (2011)

en.wikipedia.org/wiki/Tensor_processing_unit

ImageNet

To obtain training set: must collect and manually annotate data.
Questions: (i) efficient data collection and annotation
 (ii) aim for large variety in collected data

Example: Image-net (publicly available data set): images, classified into classes.

> 107 103

image-net.org

33

reCAPTCHA

Two goals. (i) protects websites from bot
 (ii) users who click correctly provide correct annotation.

github.com/google/recaptcha

34

Convolutional networks

Convolutional network. Each neuron in
first hidden layer is connected to a small
region of inputs. Here pixels.

Slide the region over input image. Use same
weights for all hidden neurons. Update

- detects the same local feature everywhere in
 input image (edge, corner,...). Feature map.

- the form of the sum is called convolution

- efficient because fewer weights

- use several feature maps to detect different features in input image

1

• • • � � � � � � � �• • • � � � � � � � �• • • � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

1

• � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �
1

� • • • � � � � � � �� • • • � � � � � � �� • • • � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �� � � � � � � � � � �

1

� • � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

3� 3

Vmn = g
� 3�

k=1

3�

l=1

wkl�m+k,n+l

�
Vmn

inputs hidden

V11

V12

10� 10

10� 10

10� 10

8� 8

8� 8

8� 8� 4

35

Convolutional networks

 - max-pooling: take maximum of over small region () to reduce # of parameters

 - add fully connected layers to learn more abstract features

 - Example

Vmn

inputs hidden

2� 2

8� 8� 410� 10 max-pooling

4� 4� 4

36

outputs

Krizhevsky, Stuskever & Hinton (2012)

Object detection - You only look once

Deep learning with a convolutional network. Here Yolo-9000 with tiny number of
weights (so that the algorithm runs on my laptop). Pretrained on VOC training set

Installation instructions:

Redmon et al. www.arxiv.org/abs/1612.08242
github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection

github.com/philipperemy/yolo-9000

37

www.google.com/recaptcha/intro/android.html

http://www.arxiv.org
http://www.arxiv.org
http://www.google.com/recaptcha/intro/android.html
http://www.google.com/recaptcha/intro/android.html

Yolo-9000

Object detection from video frames using Yolo-9000

 Film recorded with Iphone 6 on my way home from work.

 Tiny number of weights (so that the algorithm runs on my
 laptop)

 Pretrained on Pascal VOC data set

github.com/philipperemy/yolo-9000

38

host.robots.ox.ac.uk/pascal/VOC/

Deep learning for self-driving cars

Zenuity: joint venture between Autoliv and Volvo Cars. Goal: develop software for
assisted and autonomous driving. Founded 2017. 500 employees, mostly in
Gothenburg.

39

Conclusions

Artificial neural networks were already studied in the 80ies

In the last few years: deep-learning revolution due to

 - improved algorithms (focus on object detection)
 - better hardware (GPUs, dedicated chips)
 - better training sets

Applications: google, facebook, pinterest, tesla, zenuity,...

Perspectives

 - close connections to statistical physics (spin glasses, random magnets)
 - related methods in mathematical statistics (big data analysis)
 - unsupervised learning (clustering and familiarity of input data)

40

Conclusions

41

xkcd.com/1897

Literature

Neural networks

Deep learning

Convolutional networks

Nielsen Neural Networks and Deep Learning neuralnetworksanddeeplearning.com/

Goodfellow, Bengio & Courville Deep Learning MIT Press

LeCunn, Bengio & Hinton, Deep learning, Nature 521 (2015) 436

Hertz, Krogh & Palmer, Introduction to the theory of neural computation (Santa Fe Institute Series)

Mehlig, Artificial Neural Networks physics.gu.se/~frtbm

Nielsen Neural Networks and Deep Learning neuralnetworksanddeeplearning.com/

42

