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Neural Networks

1



Neurons in the cerebral cortex

Neurons in the cerebral cortex (outer layer of the cerebrum, the largest and 
best developed part of the Human brain)

brainmaps.org
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Neurons in the cerebral cortex (outer layer of the cerebrum, the largest and 
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Neuron anatomy and activity

Neurons in the cerebral cortex

synapsedendrites
cell body axon

synapseweb.clm.utexas.edu/dimensions-dendrites
wikipedia.org/wiki/Neuron

Spike train in electrosensory pyramidal neuron in  
fish (Eigenmannia)
Gabbiani & Metzner,  J. Exp. Biol. 202 (1999) 1267  

active inactive

100 µmTotal length of dendrites
up to � cm

time

4

Schematic drawing of a neuron                              Output of a neuron: spike train                          

input                process           output                            

https://synapseweb.clm.utexas.edu/dimensions-dendrites
https://synapseweb.clm.utexas.edu/dimensions-dendrites


McCulloch-Pitts neuron

Simple model for a neuron:                                Signal processing: weighted sum of inputs
                                                                          Activation function
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McCulloch & Pitts, Bull. Math. Biophys. 5 (1943) 115 



Activation function

Signal processing of McCulloch-Pitts neuron: weighted sum of inputs with activation 
function         : 
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Highly simplified idealisation of a neuron

Take activation function to be signum function            .
Output of neuron    can assume only two values,      ,
representing the level of activity of the neuron.

This is an idealisation.

-real neurons fire spike trains

-switching active          inactive can be delayed (time delay)

-real neurons may perform non-linear summation of inputs

-real neurons subject to noise (stochastic dynamics)
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Neural networks

Connect neurons into networks that can perform computing tasks: for example
image analysis, object identification, pattern recognition, classification, clustering,
data compression.
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Simple perceptrons

Two-layer perceptron

Recurrent network

Boltzmann machine

inputs         inputs         



A classification task

Input patterns         . Index                      labels patterns. 

Each pattern has two components,        and         .

Arrange components into vector,                       ,
shown in the Figure.

We see: the patterns fall into two classes:     on
the left, and      on the right.                                                
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A classification task

Input patterns         . Index                      labels patterns. 

Each pattern has two components,        and         .

Arrange components into vector,                       ,
shown in the Figure.

We see: the patterns fall into two classes:     on
the left, and      on the right. 

Draw a red line (decision boundary) to distinguish 
the two types of patterns.                                            
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A classification task

Input patterns         . Index                      labels patterns. 

Each pattern has two components,        and         .

Arrange components into vector,                       ,
shown in the Figure.

We see: the patterns fall into two classes:     on
the left, and      on the right. 

Draw a red line (decision boundary) to distinguish 
the two types of patterns.

Aim: train a neural network to compute the decision boundary. To do this, define target
values:              
                            for    , and                 for     

 Training set                                       .
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Simple perceptron

Simple perceptron: one neuron. Two input units      and    . Activation function           .  
                                          No threshold,          .
                               
                                          Output 

                                          Vectors
             

                                          Scalar product between vectors:

                                                          
                                          So                                       
        

Aim: adjust the weights     so that network outputs correct target value for all patterns:
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Geometrical solution

Simple perceptron: One neuron. Two input units      and    . Activation function           .  
                                          No threshold,          .
                               
                                          Output                           with         

Aim: adjust the weights     so that network outputs correct target values for all patterns:

                     

                                                 where               for      and                  for     .
                                             
                                                 Solution:                                                 

                                                                  decision boundary
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Check:                     so                                        . Correct
since               .             

O
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Hebb’s rule

The pattern        is on the wrong side of the red line. So                                            .

Move the red line so that                                            by rotating the weight vector     :
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Legend
t(µ) = 1

t(µ) = �1

O(8) = sgn(w · ⇠(8)) 6= t(8)

O(8) = sgn(w · ⇠(8)) = t(8)



Hebb’s rule
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Legend
t(µ) = 1

t(µ) = �1

O(8) = sgn(w · ⇠(8)) 6= t(8)

O(8) = sgn(w · ⇠(8)) = t(8)
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Hebb’s rule

The pattern        is on the wrong side of the red line. So                                            .

Move the red line so that                                            by rotating the weight vector     :

                         (small parameter           ) so that                                            .
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Hebb’s rule

The pattern        is on the wrong side of the red line. So                                            .

Move the red line so that                                            by rotating the weight vector     :

                         (small parameter           ) so that                                            .
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Hebb’s rule

The pattern        is on the wrong side of the red line. So                                            .

Move the red line so that                                            by rotating the weight vector     :

                         (small parameter           ) so that                                            .

                                                         
                                                  Note the minus sign:

                                                                                   where

                                                                                   where

                                                   Learning rule (Hebb’s rule)
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Apply learning rule many times until problem is solved.                  
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Example - AND function

Logical  AND                                                                                                                                                                                         
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Example - XOR function

Logical  XOR    
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Example - XOR function

Logical  XOR    

This problem is not linearly separable because we cannot separate     from     by a
single red line.  
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Example - XOR function

Logical  XOR    

This problem is not linearly separable because we cannot separate     from     by a
single red line.  

Solution: use two red lines.
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Example - XOR function
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Non-(linearly) separable problems

Solve problems that are not linearly separable with a hidden layer of neurons

Four hidden neurons - one for each red line-segment. Move the red lines into the 
correct configuration by repeatedly using Hebb’s rule until the problem is solved
(a fifth neuron assigns regions and solves the classification problem).
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Generalisation

Train the network on a training set                                       : move red lines into the
                                        correct configuration by repeatedly applying Hebb’s rule to
                                        adjust all weights. Usually many iterations necessary.

Once all red lines are in the right place (all weights determined), apply network to a new
data set. If the training set was reliable, then the network has learnt to classify the new data,
it has learnt to generalise.                                                                                                                                                                        
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Training

Train the network on a training set                                       : move red lines into the
                                        correct configuration by repeatedly applying Hebb’s rule to
                                        adjust all weights. Usually many iterations necessary.

Once all red lines are in the right place (all weights determined), apply network to a new
data set. If the training set was reliable, then the network has learnt to classify the new data,
it has learnt to generalise.                                                                                                                                                                                                                                                                                                                                                       
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Training

Train the network on a training set                                       : move red lines into the
                                        correct configuration by repeatedly applying Hebb’s rule to
                                        adjust all weights. Usually many iterations necessary.

Usually a small number of errors is acceptable. It is often not meaningful to try to fine-
tune very precisely (input patterns are subject to noise).                                                                                                                                                                               
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Overfitting

Train the network on a training set                                       : move red lines into the
                                        correct configuration by repeatedly applying Hebb’s rule to
                                        adjust all weights. Usually many iterations necessary.

                                                  Here: used      hidden neurons to fit decision boundary
                                                  decision boundary very precisely.

                                                  But often the inputs are affected by noise, which
                                                  can be very different in different data sets
                                                  

                                                                                                                                                                               

�1

�2

28

15

training set

Legend
t(µ) = 1

t(µ) = �1

(�(µ), t(µ)), µ = 1, . . . , p



Overfitting

Train the network on a training set                                       : move red lines into the
                                        correct configuration by repeatedly applying Hebb’s rule to
                                        adjust all weights. Usually many iterations necessary.

                                                  Here: used      hidden neurons to fit decision boundary
                                                  decision boundary very precisely.

                                                  But often the inputs are affected by noise, which
                                                  can be very different in different data sets.

                                                  Here the network just learnt noise in the training set.
                                                  Avoid this by reducing number of weights (dropout).
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Multilayer perceptrons

All examples  had a two-dimensional input space and one-dimensional outputs.
Reason: so that we could draw the problem and understand its geometrical form.

In reality problems are often high-dimensional. For example image recognition: 
input dimension                            . Output dimension: number of classes to be 
recognised (car, lorry, road sign, person, bicycle,...)   

Multilayer perceptron: network with many hidden layers

Two problems: (i) expensive to train if many weights
                        (ii) slow convergence (weights get stuck)

Questions: (i) how many hidden layers necessary?
                 (ii) how many hidden layers efficient?

                                                                                                                                                                  

N = #pixels� 3

hidden layers
number           and mm� 1
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How many hidden layers?

All Boolean functions with     inputs can be trained/learned with a single hidden layer. 

Proof by construction. Requires       neurons in the hidden layer.

Example: XOR function (           ).

For large     , this architecture is not practical,
because the number of neurons increases
exponentially with     .

Better: use more layers. Intuition: the more layers the more
powerful is the network.

But such deep networks
are in general hard to 
train.
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Deep learning

Deep learning. Perceptrons with
large numbers of layers.
 
In the last few years, interest in
neural-network algorithms has
exploded, and their performance
has significantly improved. Why?

Better training sets
 
Improved architecture   
 - better activation functions,
 - a bunch of other tricks (dropout, batch normalisation) 

Better hardware 
 - GPUs
 - dedicated chips by Google
                                                                                                                                              

CHAPTER 1. INTRODUCTION
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Figure 1.12: Since deep networks reached the scale necessary to compete in the ImageNet

Large Scale Visual Recognition Challenge, they have consistently won the competition

every year, and yielded lower and lower error rates each time. Data from Russakovsky

et al. et al.( ) and2014b He ( ).2015
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Goodfellow et al. Deep Learning (2016)
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g(b) = max(0, b) Giorot, Bordes & Bengio (2011)

en.wikipedia.org/wiki/Tensor_processing_unit



ImageNet

To obtain training set: must collect and manually annotate data.
Questions: (i) efficient data collection and annotation
                 (ii) aim for large variety in collected data

Example: Image-net (publicly available data set):           images, classified into      classes.
                                                                                                                                                                  

> 107 103

image-net.org
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reCAPTCHA

Two goals. (i) protects websites from bot
                 (ii) users who click correctly provide correct annotation.

github.com/google/recaptcha
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Convolutional networks

Convolutional network. Each neuron in
first hidden layer is connected to a small
region of inputs. Here          pixels.

Slide the region over input image. Use same
weights for all hidden neurons. Update 

- detects the same local feature everywhere in
  input image (edge, corner,...). Feature map.

- the form of the sum is called convolution

- efficient because fewer weights 

- use several feature maps to detect different features in input image 
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Convolutional networks

 - max-pooling: take maximum of          over small region (         ) to reduce # of parameters

 - add fully connected layers to learn more abstract features

 - Example

Vmn

inputs         hidden

2� 2

8� 8� 410� 10 max-pooling

4� 4� 4

36

outputs         

Krizhevsky, Stuskever & Hinton (2012)



Object detection - You only look once

Deep learning with a convolutional network. Here Yolo-9000 with tiny number of
weights (so that the algorithm runs on my laptop). Pretrained on VOC training set

Installation instructions:                                                                                                                                                           

Redmon et al. www.arxiv.org/abs/1612.08242
github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Object-Detection

github.com/philipperemy/yolo-9000
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www.google.com/recaptcha/intro/android.html

http://www.arxiv.org
http://www.arxiv.org
http://www.google.com/recaptcha/intro/android.html
http://www.google.com/recaptcha/intro/android.html


Yolo-9000

Object detection from video frames using Yolo-9000

                                       Film recorded with Iphone 6 on my way home from work.

                                       Tiny number of weights (so that the algorithm runs on my
                                       laptop) 

                                       Pretrained on Pascal VOC data set
                                                                                                                                                                  

github.com/philipperemy/yolo-9000
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Deep learning for self-driving cars

Zenuity: joint venture between Autoliv and Volvo Cars. Goal: develop software for
assisted and autonomous driving. Founded 2017. 500 employees, mostly in 
Gothenburg.
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Conclusions

Artificial neural networks were already studied in the 80ies

In the last few years: deep-learning revolution due to

  - improved algorithms (focus on object detection)
  - better hardware (GPUs, dedicated chips)
  - better training sets

Applications: google, facebook, pinterest, tesla, zenuity,...

Perspectives

  - close connections to statistical physics (spin glasses, random magnets)
  - related methods in mathematical statistics (big data analysis)
  - unsupervised learning (clustering and familiarity of input data)
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Conclusions
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